Collège de France (Physique/Chimie)

Feb 26 2020 82 mins 6.9k

Podcast du Collège de France

























































































04 - Les séismes profonds - VIDEO
Nov 13 2018 94 mins  
Barbara Romanowicz Physique de l'intérieur de la terre Année 2018-2019 Les séismes profonds Bibliographie Cours no 3 - Séismes de profondeur intermédiaire et déshydratation de la croûte et de la lithosphère Brudzinski, M. R., C. H. Thurber, B. R. Hacker and E. R. Engdahl (2007) Global Prevalence of Double Benioff Zones, Science, 316, 1472-1474. Faccenda, M. (2014) Water in the slab: a trilogy, Tectonophys. 614, 1-30. Garth, T. and A. Riebrock (2017) Constraining the hydration of the subducting Nazca plate beneath northern Chile using subduction zone guided waves, Earth Planet. Sci. lett, 474, 237-247. Hacker, B., R., S. M. Peacock, G. A. Abers and S. D. Holloway (2003) Subduction factory. 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res., 108, B1, 2030. Kawakatsu, H. (1985) Double seismic zones in Tonga, Nature, 316, 53-55 Kawakatsu, H. and S. Watada (2008) Seismic Evidence for Deep-Water Transportation in the Mantle, Science, 316, 1468-1471. Kita, S., T. Okada, A. Hasegawa, J. Nakjima, T. Matsuzawa (2010) Existence of interplane earthquakes and neutral stress boundary between the upper and lower planes of the double seismic zone beneath Tohoku and Hokkaido in northeastern Japan, Tectonoph. 496, 68-92. Kirby, S., E. R. Engdahl, R. Denlinger (1996) Intermediate-Depth Intraslab Earthquakes and Arc Volcanismas physical expression of mantle metamorphism in subducting slabs (Overview), in "SUbduction Top to Bottom", AGU Monograph Series, edited by G. B. Bebout et al., AGU, Washington, D.C. Naif, S., K. Key, S. Constable, and R. L. Evans (2015) Water-rih bending faults at the Middle AMerica Trench, G-Cubed, 16, 2582-2597. Ranero, C. R., J. P. Morgan, K. McINtosh and C. Reichert (2003) Bending-related faulting and mantle serpentinization at the Middle America Trench, Nature 425, 367-373. Peacock, S. M. (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29, 299-302. Reynard, B. (2013) Serpentine in active subduction zones, Lithos, 178, 171-185. Rondenay, S., G. A. Abers and P. E. van Keken (2008) Seismic imaging of subduction zone metamorphism, Geology, 36, 275-278. Shillington, D. J., A. Becel., M. R. Nedimovic, H. Kuehn et al. (2015) Link between plate fabric, hydration and subduction zone seismicity in Alaska, Nat. Geosc., 8, 961- 964

04 - Les séismes profonds - PDF
Nov 13 2018 94 mins  
Barbara Romanowicz Physique de l'intérieur de la terre Année 2018-2019 Les séismes profonds Bibliographie Cours no 3 - Séismes de profondeur intermédiaire et déshydratation de la croûte et de la lithosphère Brudzinski, M. R., C. H. Thurber, B. R. Hacker and E. R. Engdahl (2007) Global Prevalence of Double Benioff Zones, Science, 316, 1472-1474. Faccenda, M. (2014) Water in the slab: a trilogy, Tectonophys. 614, 1-30. Garth, T. and A. Riebrock (2017) Constraining the hydration of the subducting Nazca plate beneath northern Chile using subduction zone guided waves, Earth Planet. Sci. lett, 474, 237-247. Hacker, B., R., S. M. Peacock, G. A. Abers and S. D. Holloway (2003) Subduction factory. 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res., 108, B1, 2030. Kawakatsu, H. (1985) Double seismic zones in Tonga, Nature, 316, 53-55 Kawakatsu, H. and S. Watada (2008) Seismic Evidence for Deep-Water Transportation in the Mantle, Science, 316, 1468-1471. Kita, S., T. Okada, A. Hasegawa, J. Nakjima, T. Matsuzawa (2010) Existence of interplane earthquakes and neutral stress boundary between the upper and lower planes of the double seismic zone beneath Tohoku and Hokkaido in northeastern Japan, Tectonoph. 496, 68-92. Kirby, S., E. R. Engdahl, R. Denlinger (1996) Intermediate-Depth Intraslab Earthquakes and Arc Volcanismas physical expression of mantle metamorphism in subducting slabs (Overview), in "SUbduction Top to Bottom", AGU Monograph Series, edited by G. B. Bebout et al., AGU, Washington, D.C. Naif, S., K. Key, S. Constable, and R. L. Evans (2015) Water-rih bending faults at the Middle AMerica Trench, G-Cubed, 16, 2582-2597. Ranero, C. R., J. P. Morgan, K. McINtosh and C. Reichert (2003) Bending-related faulting and mantle serpentinization at the Middle America Trench, Nature 425, 367-373. Peacock, S. M. (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29, 299-302. Reynard, B. (2013) Serpentine in active subduction zones, Lithos, 178, 171-185. Rondenay, S., G. A. Abers and P. E. van Keken (2008) Seismic imaging of subduction zone metamorphism, Geology, 36, 275-278. Shillington, D. J., A. Becel., M. R. Nedimovic, H. Kuehn et al. (2015) Link between plate fabric, hydration and subduction zone seismicity in Alaska, Nat. Geosc., 8, 961- 964

04 - Les séismes profonds
Nov 13 2018 94 mins  
Barbara Romanowicz Physique de l'intérieur de la terre Année 2018-2019 Les séismes profonds Bibliographie Cours no 3 - Séismes de profondeur intermédiaire et déshydratation de la croûte et de la lithosphère Brudzinski, M. R., C. H. Thurber, B. R. Hacker and E. R. Engdahl (2007) Global Prevalence of Double Benioff Zones, Science, 316, 1472-1474. Faccenda, M. (2014) Water in the slab: a trilogy, Tectonophys. 614, 1-30. Garth, T. and A. Riebrock (2017) Constraining the hydration of the subducting Nazca plate beneath northern Chile using subduction zone guided waves, Earth Planet. Sci. lett, 474, 237-247. Hacker, B., R., S. M. Peacock, G. A. Abers and S. D. Holloway (2003) Subduction factory. 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res., 108, B1, 2030. Kawakatsu, H. (1985) Double seismic zones in Tonga, Nature, 316, 53-55 Kawakatsu, H. and S. Watada (2008) Seismic Evidence for Deep-Water Transportation in the Mantle, Science, 316, 1468-1471. Kita, S., T. Okada, A. Hasegawa, J. Nakjima, T. Matsuzawa (2010) Existence of interplane earthquakes and neutral stress boundary between the upper and lower planes of the double seismic zone beneath Tohoku and Hokkaido in northeastern Japan, Tectonoph. 496, 68-92. Kirby, S., E. R. Engdahl, R. Denlinger (1996) Intermediate-Depth Intraslab Earthquakes and Arc Volcanismas physical expression of mantle metamorphism in subducting slabs (Overview), in "SUbduction Top to Bottom", AGU Monograph Series, edited by G. B. Bebout et al., AGU, Washington, D.C. Naif, S., K. Key, S. Constable, and R. L. Evans (2015) Water-rih bending faults at the Middle AMerica Trench, G-Cubed, 16, 2582-2597. Ranero, C. R., J. P. Morgan, K. McINtosh and C. Reichert (2003) Bending-related faulting and mantle serpentinization at the Middle America Trench, Nature 425, 367-373. Peacock, S. M. (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29, 299-302. Reynard, B. (2013) Serpentine in active subduction zones, Lithos, 178, 171-185. Rondenay, S., G. A. Abers and P. E. van Keken (2008) Seismic imaging of subduction zone metamorphism, Geology, 36, 275-278. Shillington, D. J., A. Becel., M. R. Nedimovic, H. Kuehn et al. (2015) Link between plate fabric, hydration and subduction zone seismicity in Alaska, Nat. Geosc., 8, 961- 964





03 - Les séismes profonds - VIDEO
Nov 06 2018 92 mins  
Barbara Romanowicz Physique de l'intérieur de la terre Année 2018-2019 Les séismes profonds Bibliographie Cours no 3 - Séismes de profondeur intermédiaire et déshydratation de la croûte et de la lithosphère Brudzinski, M. R., C. H. Thurber, B. R. Hacker and E. R. Engdahl (2007) Global Prevalence of Double Benioff Zones, Science, 316, 1472-1474. Faccenda, M. (2014) Water in the slab: a trilogy, Tectonophys. 614, 1-30. Garth, T. and A. Riebrock (2017) Constraining the hydration of the subducting Nazca plate beneath northern Chile using subduction zone guided waves, Earth Planet. Sci. lett, 474, 237-247. Hacker, B., R., S. M. Peacock, G. A. Abers and S. D. Holloway (2003) Subduction factory. 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res., 108, B1, 2030. Kawakatsu, H. (1985) Double seismic zones in Tonga, Nature, 316, 53-55 Kawakatsu, H. and S. Watada (2008) Seismic Evidence for Deep-Water Transportation in the Mantle, Science, 316, 1468-1471. Kita, S., T. Okada, A. Hasegawa, J. Nakjima, T. Matsuzawa (2010) Existence of interplane earthquakes and neutral stress boundary between the upper and lower planes of the double seismic zone beneath Tohoku and Hokkaido in northeastern Japan, Tectonoph. 496, 68-92. Kirby, S., E. R. Engdahl, R. Denlinger (1996) Intermediate-Depth Intraslab Earthquakes and Arc Volcanismas physical expression of mantle metamorphism in subducting slabs (Overview), in "SUbduction Top to Bottom", AGU Monograph Series, edited by G. B. Bebout et al., AGU, Washington, D.C. Naif, S., K. Key, S. Constable, and R. L. Evans (2015) Water-rih bending faults at the Middle AMerica Trench, G-Cubed, 16, 2582-2597. Ranero, C. R., J. P. Morgan, K. McINtosh and C. Reichert (2003) Bending-related faulting and mantle serpentinization at the Middle America Trench, Nature 425, 367-373. Peacock, S. M. (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29, 299-302. Reynard, B. (2013) Serpentine in active subduction zones, Lithos, 178, 171-185. Rondenay, S., G. A. Abers and P. E. van Keken (2008) Seismic imaging of subduction zone metamorphism, Geology, 36, 275-278. Shillington, D. J., A. Becel., M. R. Nedimovic, H. Kuehn et al. (2015) Link between plate fabric, hydration and subduction zone seismicity in Alaska, Nat. Geosc., 8, 961- 964


03 - Les séismes profonds - PDF
Nov 06 2018 92 mins  
Barbara Romanowicz Physique de l'intérieur de la terre Année 2018-2019 Les séismes profonds Bibliographie Cours no 3 - Séismes de profondeur intermédiaire et déshydratation de la croûte et de la lithosphère Brudzinski, M. R., C. H. Thurber, B. R. Hacker and E. R. Engdahl (2007) Global Prevalence of Double Benioff Zones, Science, 316, 1472-1474. Faccenda, M. (2014) Water in the slab: a trilogy, Tectonophys. 614, 1-30. Garth, T. and A. Riebrock (2017) Constraining the hydration of the subducting Nazca plate beneath northern Chile using subduction zone guided waves, Earth Planet. Sci. lett, 474, 237-247. Hacker, B., R., S. M. Peacock, G. A. Abers and S. D. Holloway (2003) Subduction factory. 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res., 108, B1, 2030. Kawakatsu, H. (1985) Double seismic zones in Tonga, Nature, 316, 53-55 Kawakatsu, H. and S. Watada (2008) Seismic Evidence for Deep-Water Transportation in the Mantle, Science, 316, 1468-1471. Kita, S., T. Okada, A. Hasegawa, J. Nakjima, T. Matsuzawa (2010) Existence of interplane earthquakes and neutral stress boundary between the upper and lower planes of the double seismic zone beneath Tohoku and Hokkaido in northeastern Japan, Tectonoph. 496, 68-92. Kirby, S., E. R. Engdahl, R. Denlinger (1996) Intermediate-Depth Intraslab Earthquakes and Arc Volcanismas physical expression of mantle metamorphism in subducting slabs (Overview), in "SUbduction Top to Bottom", AGU Monograph Series, edited by G. B. Bebout et al., AGU, Washington, D.C. Naif, S., K. Key, S. Constable, and R. L. Evans (2015) Water-rih bending faults at the Middle AMerica Trench, G-Cubed, 16, 2582-2597. Ranero, C. R., J. P. Morgan, K. McINtosh and C. Reichert (2003) Bending-related faulting and mantle serpentinization at the Middle America Trench, Nature 425, 367-373. Peacock, S. M. (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29, 299-302. Reynard, B. (2013) Serpentine in active subduction zones, Lithos, 178, 171-185. Rondenay, S., G. A. Abers and P. E. van Keken (2008) Seismic imaging of subduction zone metamorphism, Geology, 36, 275-278. Shillington, D. J., A. Becel., M. R. Nedimovic, H. Kuehn et al. (2015) Link between plate fabric, hydration and subduction zone seismicity in Alaska, Nat. Geosc., 8, 961- 964

03 - Les séismes profonds
Nov 06 2018 92 mins  
Barbara Romanowicz Physique de l'intérieur de la terre Année 2018-2019 Les séismes profonds Bibliographie Cours no 3 - Séismes de profondeur intermédiaire et déshydratation de la croûte et de la lithosphère Brudzinski, M. R., C. H. Thurber, B. R. Hacker and E. R. Engdahl (2007) Global Prevalence of Double Benioff Zones, Science, 316, 1472-1474. Faccenda, M. (2014) Water in the slab: a trilogy, Tectonophys. 614, 1-30. Garth, T. and A. Riebrock (2017) Constraining the hydration of the subducting Nazca plate beneath northern Chile using subduction zone guided waves, Earth Planet. Sci. lett, 474, 237-247. Hacker, B., R., S. M. Peacock, G. A. Abers and S. D. Holloway (2003) Subduction factory. 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res., 108, B1, 2030. Kawakatsu, H. (1985) Double seismic zones in Tonga, Nature, 316, 53-55 Kawakatsu, H. and S. Watada (2008) Seismic Evidence for Deep-Water Transportation in the Mantle, Science, 316, 1468-1471. Kita, S., T. Okada, A. Hasegawa, J. Nakjima, T. Matsuzawa (2010) Existence of interplane earthquakes and neutral stress boundary between the upper and lower planes of the double seismic zone beneath Tohoku and Hokkaido in northeastern Japan, Tectonoph. 496, 68-92. Kirby, S., E. R. Engdahl, R. Denlinger (1996) Intermediate-Depth Intraslab Earthquakes and Arc Volcanismas physical expression of mantle metamorphism in subducting slabs (Overview), in "SUbduction Top to Bottom", AGU Monograph Series, edited by G. B. Bebout et al., AGU, Washington, D.C. Naif, S., K. Key, S. Constable, and R. L. Evans (2015) Water-rih bending faults at the Middle AMerica Trench, G-Cubed, 16, 2582-2597. Ranero, C. R., J. P. Morgan, K. McINtosh and C. Reichert (2003) Bending-related faulting and mantle serpentinization at the Middle America Trench, Nature 425, 367-373. Peacock, S. M. (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology, 29, 299-302. Reynard, B. (2013) Serpentine in active subduction zones, Lithos, 178, 171-185. Rondenay, S., G. A. Abers and P. E. van Keken (2008) Seismic imaging of subduction zone metamorphism, Geology, 36, 275-278. Shillington, D. J., A. Becel., M. R. Nedimovic, H. Kuehn et al. (2015) Link between plate fabric, hydration and subduction zone seismicity in Alaska, Nat. Geosc., 8, 961- 964


















































06 - Les Grands Tremblements de Terre - VIDEO
Nov 21 2017 100 mins  
Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

06 - Les Grands Tremblements de Terre - PDF
Nov 21 2017 100 mins  
Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,


06 - Les Grands Tremblements de Terre
Nov 21 2017 100 mins  
Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -6- Répliques, glissements lents et autres phénomènes autour des grands séismes Bibliographie: "Les grands séismes: observation et modélisation" Prof. B. Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no 6 Asano, Y. T. Saito, Y. Ito et al. (2011) Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planet. Scpace, 63, 669-673. Avouac, J. P., L. Meng et al. (2015) Lower edge of locked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake,Nat. Geosc., 8, 708-712. Bouchon, M. , V. Durand, D. Marsan et al. (2013) The long precursory phase of most large interplate earthquakes, Nat. Geosc., 6, 299-302. Bouchon, M., H. Karbulut et al. (2011) Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake, Science, 331 877-880. Calais, E. and J. B. Minster (1995) GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake, Geophys. Res. Lett., 22, 1045-1048. Heki, K. S. Miyazaki and H. Tsuji (1994) Silent fault slip following an interplate thrust earthquake at the Japan Trench, Nature, 386, 595-598. Heki, K. (2011) Ionospheric electron enhancement preceding the 2011 Tohoku-Oki earthquake, Geophys. Res. Lett., 38, L17312. Hu, Y., R. Bürgmann, N. Uchida et al. (2016) Stress-driven relaxation of heterogeneous upper mantle and time-dependent afterslip following the 2011 Tohoku earthquake, J. Geophys. Res., 121, 385-411. Kanamori, H. (2014) The Diversity of Large Earthquakes and Its Implications for Hazard Mitigation, Annu. Rev. Earth Planet. Sci., 42, 7-26. Kato, K., K. Obara et al. (2012) Propagation of Slow Slip Leading Up tothe 2011Mw 9.0 Tohoku-Oki Earthquake, Science, 335, 705-708. Koper, K., A. Hutko, T. Lay, C. J. Ammon and H. Kanamori(2011) Frequency- dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short-period P wave backprojection images and broadband seismic rupture models, Earth Sci. Space, 63, 599-602. Lay, T., H. Kanamori et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res., 117, B04311. Nadeau, R. M.. and T. V. McEvilly (1999) Fault slip rates at depth from recurrence intervals of repeating microearthquakes, Science, 285, 718-721. Obara, K. and A. Kato (2016) Connecting slow earthquakes to huge earthquakes, Science 353, 253-256. Occhipinti, G., L. Rolland, P. Lognonné nd S. Watada (2013) From Sumatra 2004 to Tohoku-Oki 2011: The systematic GPS detection of the ionospheric signature induced by tsunamigenic earthquakes, J. Geophys. Res., 118, 3626-3636. Occhipinti, G., P. Lognonné, E. Alam Kherani and H. Hébert (2006) Three- dimensional waveform modeling of ionospheric signature induced by the 2004 Sumatra tsunami, Geophys. Res. Lett., 33, L20104. Shcherbakov, R. (2004) A generalized Omori’s law for earthquake aftershock decay, Geophys. Res. Lett., 31, L11613. Sun, T. , K. Wang et al. (2014) Prevalence of viscoelastic relaxation after the 2011 Tohoku-oki earthquake, Nature, 514, 84-87. Tanaka, T, T. Ichinose et al. (1984)HF-Doppler observations of acoustic waves excited by the Urakawa-Oki earthquake on 21 March 1982, J. Atm. Terr. Phys., 46, 233-245. Tsugawa, T., A. Saito et al. (2011) Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 875-879 Uchida, N and T. Matsuzawa (2013) Pre- and postseismic slow slip surrounding the 2011 Tohoku-oki earthquake rupture , Earth Planet. Sci. Lett., 374, 81-91. Uchida, N., T. Iinuma, et al. (2016) Periodic slow slip triggersmegathrust zone earthquakes in northeastern Japan, Science, 351, 488-492. Yue, H. T. Lay, L. Rivera et al. (2014) Localized fault slip to the trench in the 2010 Maule, Chile Mw = 8.8 earthquake from joint inversion of high-rate GPS, teleseismic body waves, InSAR, campaign GPS, and tsunami observations, J. Geophys. Res., 119, 7786–7804,

05 - Les Grands Tremblements de Terre - VIDEO
Nov 15 2017 96 mins  
Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -5- Imagerie de la source sismique (fin) : Le séisme de Fukushima (Tohoku) de 2011. Mw 9.0 Bibliographie: "Les grands séismes: observation et modélisation" Barbara Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no5 Fujii, Y. and K. Satake (2007) Tsunami Source of the 2004 Sumatra–Andaman Earthquake Inferred from Tide Gauge and Satellite Data, Bull. Seism. Soc. Amer., 97, S192-S207. Fujii, Y., K. Satake et al. (2011) Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 64, 815-820. Fujiwara, T., S. Kodaira, T. No et al. (2011) The 2011 Tohoku-Oki Earthquake: displacement reaching the Trench Axis, Science, 334, 1240. Hashimoto, C., A. Noda, T. Sagiya and Mastsu'ura (2009) Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion, Nat. Geosc. 2, 141- 144 Hoshiba and Ozaki (2014) Earthquake Early Warning and Tsunami Warning of the Japan Meteorological Agency, and their performance in the 2011 off the Pacific Coast of Tohoku Earthquake (Mw 9.0), in Early Warning for Geological Disasters, Chapter 2, Adv. Tech. in Earth Sciences, Springer Verlag Berlin. Koper, K., A. Hutko, T. Lay, Ch. J. Ammon, H. Kanamori (2011) Frequency-dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short- period P wave backprojection images and broadband seismic rupture models, Earth Space Sci., 63, 599-602 Lay, T., C. Ammon, H. Kanamori, L. Xue and M. Kim (2011) Possible large near-trench slip during the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 687-792. Lay, T., H. Kanamori, C. Ammon, K. Koper et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J.Geophys. Res., 117, B04311. Meng, L., A. Inbal and J. P. Ampuero (2011) A window into the complexity of the dynamic rupture of the 2011 Mw 9 Tohoku-Oki earthquake, Geophys. Res. Lett., 48, L00G07 Panet, I. (2007) Satake, K. (2013) Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as Inferred from Tsunami Waveform Data, Bull. Seism. Soc. Amer., 103, 1473-1492. Satriano, C., V. Dionicio et al. (2014) Structural and thermal control of seismic activity and megathrust rupture dynamics in subduction zones: Lessons from the Mw 9.0, 2011 Tohoku earthquake, Earth Planet. Sci. ett., 403, 287-298. Sawai, Y., Y. Namegaya et al. (2012) Challenges of anticipating the 2011 Tohoku earthquake and tsunami using coastal geology, Geophys. Res. Lett., 39, L21309 Sawai, Y., Y. Namegaya et al. (2015) Shorter intervals between great earthquakes near Sendai: Scour ponds and a sand layer attributable to A.D. 1454 overwash, Geophys. Res. Lett., 42, 4795-4800. Simons, M., S. Minson, A. Sladen et al. (2011) The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries, Science, 332, 1421- 1425. Stein, S. and E. Okal (2011) The Size of the 2011 Tohoku Earthquake Need Not Have Been a Surprise, EOS, 92, 227-228. Vigny, C., W. Simons, S. Abu et al. (2007) Insight into the 2004 Sumatra–Andaman earthquake from GPS measurements in southeast Asia, Nature, 436, 201- 206. Wiseman, K., R. Bürgmann, A. Freed, P. Banerjee (2015) Viscoelastic relaxation in a heterogeneous Earth following the 2004 Sumatra–Andaman earthquake , Earth Planet. Sci. Lett., 431, 308-317.

05 - Les Grands Tremblements de Terre - PDF
Nov 15 2017 96 mins  
Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -5- Imagerie de la source sismique (fin) : Le séisme de Fukushima (Tohoku) de 2011. Mw 9.0 Bibliographie: "Les grands séismes: observation et modélisation" Barbara Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no5 Fujii, Y. and K. Satake (2007) Tsunami Source of the 2004 Sumatra–Andaman Earthquake Inferred from Tide Gauge and Satellite Data, Bull. Seism. Soc. Amer., 97, S192-S207. Fujii, Y., K. Satake et al. (2011) Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 64, 815-820. Fujiwara, T., S. Kodaira, T. No et al. (2011) The 2011 Tohoku-Oki Earthquake: displacement reaching the Trench Axis, Science, 334, 1240. Hashimoto, C., A. Noda, T. Sagiya and Mastsu'ura (2009) Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion, Nat. Geosc. 2, 141- 144 Hoshiba and Ozaki (2014) Earthquake Early Warning and Tsunami Warning of the Japan Meteorological Agency, and their performance in the 2011 off the Pacific Coast of Tohoku Earthquake (Mw 9.0), in Early Warning for Geological Disasters, Chapter 2, Adv. Tech. in Earth Sciences, Springer Verlag Berlin. Koper, K., A. Hutko, T. Lay, Ch. J. Ammon, H. Kanamori (2011) Frequency-dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short- period P wave backprojection images and broadband seismic rupture models, Earth Space Sci., 63, 599-602 Lay, T., C. Ammon, H. Kanamori, L. Xue and M. Kim (2011) Possible large near-trench slip during the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 687-792. Lay, T., H. Kanamori, C. Ammon, K. Koper et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J.Geophys. Res., 117, B04311. Meng, L., A. Inbal and J. P. Ampuero (2011) A window into the complexity of the dynamic rupture of the 2011 Mw 9 Tohoku-Oki earthquake, Geophys. Res. Lett., 48, L00G07 Panet, I. (2007) Satake, K. (2013) Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as Inferred from Tsunami Waveform Data, Bull. Seism. Soc. Amer., 103, 1473-1492. Satriano, C., V. Dionicio et al. (2014) Structural and thermal control of seismic activity and megathrust rupture dynamics in subduction zones: Lessons from the Mw 9.0, 2011 Tohoku earthquake, Earth Planet. Sci. ett., 403, 287-298. Sawai, Y., Y. Namegaya et al. (2012) Challenges of anticipating the 2011 Tohoku earthquake and tsunami using coastal geology, Geophys. Res. Lett., 39, L21309 Sawai, Y., Y. Namegaya et al. (2015) Shorter intervals between great earthquakes near Sendai: Scour ponds and a sand layer attributable to A.D. 1454 overwash, Geophys. Res. Lett., 42, 4795-4800. Simons, M., S. Minson, A. Sladen et al. (2011) The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries, Science, 332, 1421- 1425. Stein, S. and E. Okal (2011) The Size of the 2011 Tohoku Earthquake Need Not Have Been a Surprise, EOS, 92, 227-228. Vigny, C., W. Simons, S. Abu et al. (2007) Insight into the 2004 Sumatra–Andaman earthquake from GPS measurements in southeast Asia, Nature, 436, 201- 206. Wiseman, K., R. Bürgmann, A. Freed, P. Banerjee (2015) Viscoelastic relaxation in a heterogeneous Earth following the 2004 Sumatra–Andaman earthquake , Earth Planet. Sci. Lett., 431, 308-317.

05 - Les Grands Tremblements de Terre
Nov 15 2017 96 mins  
Barbara Romanowicz Physique de l'intérieur de la terre Année 2017-2018 Les Grands Tremblements de Terre Les Grands Séismes : Observation et Modélisation -5- Imagerie de la source sismique (fin) : Le séisme de Fukushima (Tohoku) de 2011. Mw 9.0 Bibliographie: "Les grands séismes: observation et modélisation" Barbara Romanowicz, Chaire de Physique de l'Intérieur de la Terre Bibliographie Cours no5 Fujii, Y. and K. Satake (2007) Tsunami Source of the 2004 Sumatra–Andaman Earthquake Inferred from Tide Gauge and Satellite Data, Bull. Seism. Soc. Amer., 97, S192-S207. Fujii, Y., K. Satake et al. (2011) Tsunami source of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 64, 815-820. Fujiwara, T., S. Kodaira, T. No et al. (2011) The 2011 Tohoku-Oki Earthquake: displacement reaching the Trench Axis, Science, 334, 1240. Hashimoto, C., A. Noda, T. Sagiya and Mastsu'ura (2009) Interplate seismogenic zones along the Kuril-Japan trench inferred from GPS data inversion, Nat. Geosc. 2, 141- 144 Hoshiba and Ozaki (2014) Earthquake Early Warning and Tsunami Warning of the Japan Meteorological Agency, and their performance in the 2011 off the Pacific Coast of Tohoku Earthquake (Mw 9.0), in Early Warning for Geological Disasters, Chapter 2, Adv. Tech. in Earth Sciences, Springer Verlag Berlin. Koper, K., A. Hutko, T. Lay, Ch. J. Ammon, H. Kanamori (2011) Frequency-dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: Comparison of short- period P wave backprojection images and broadband seismic rupture models, Earth Space Sci., 63, 599-602 Lay, T., C. Ammon, H. Kanamori, L. Xue and M. Kim (2011) Possible large near-trench slip during the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 687-792. Lay, T., H. Kanamori, C. Ammon, K. Koper et al. (2012) Depth-varying rupture properties of subduction zone megathrust faults, J.Geophys. Res., 117, B04311. Meng, L., A. Inbal and J. P. Ampuero (2011) A window into the complexity of the dynamic rupture of the 2011 Mw 9 Tohoku-Oki earthquake, Geophys. Res. Lett., 48, L00G07 Panet, I. (2007) Satake, K. (2013) Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as Inferred from Tsunami Waveform Data, Bull. Seism. Soc. Amer., 103, 1473-1492. Satriano, C., V. Dionicio et al. (2014) Structural and thermal control of seismic activity and megathrust rupture dynamics in subduction zones: Lessons from the Mw 9.0, 2011 Tohoku earthquake, Earth Planet. Sci. ett., 403, 287-298. Sawai, Y., Y. Namegaya et al. (2012) Challenges of anticipating the 2011 Tohoku earthquake and tsunami using coastal geology, Geophys. Res. Lett., 39, L21309 Sawai, Y., Y. Namegaya et al. (2015) Shorter intervals between great earthquakes near Sendai: Scour ponds and a sand layer attributable to A.D. 1454 overwash, Geophys. Res. Lett., 42, 4795-4800. Simons, M., S. Minson, A. Sladen et al. (2011) The 2011 Magnitude 9.0 Tohoku-Oki Earthquake: Mosaicking the Megathrust from Seconds to Centuries, Science, 332, 1421- 1425. Stein, S. and E. Okal (2011) The Size of the 2011 Tohoku Earthquake Need Not Have Been a Surprise, EOS, 92, 227-228. Vigny, C., W. Simons, S. Abu et al. (2007) Insight into the 2004 Sumatra–Andaman earthquake from GPS measurements in southeast Asia, Nature, 436, 201- 206. Wiseman, K., R. Bürgmann, A. Freed, P. Banerjee (2015) Viscoelastic relaxation in a heterogeneous Earth following the 2004 Sumatra–Andaman earthquake , Earth Planet. Sci. Lett., 431, 308-317.











































































































































































































































































































No review available yet...