Mar 05 2025 13 mins
本期的 18 篇论文如下:
[00:21] 🚀 MPO: Boosting LLM Agents with Meta Plan Optimization(MPO:通过元计划优化提升LLM代理)
[00:59] 🤖 Mask-DPO: Generalizable Fine-grained Factuality Alignment of LLMs(Mask-DPO:大语言模型的可泛化细粒度事实性对齐)
[01:43] 🧩 LADDER: Self-Improving LLMs Through Recursive Problem Decomposition(LADDER:通过递归问题分解实现自我改进的LLMs)
[02:26] 📚 Wikipedia in the Era of LLMs: Evolution and Risks(大语言模型时代的维基百科:演变与风险)
[03:06] 🚀 PipeOffload: Improving Scalability of Pipeline Parallelism with Memory Optimization(PipeOffload:通过内存优化提升流水线并行的可扩展性)
[03:50] 🔄 Iterative Value Function Optimization for Guided Decoding(迭代价值函数优化指导解码)
[04:33] 🤖 MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents(多智能体基准:评估LLM智能体的协作与竞争)
[05:19] ⚡ FR-Spec: Accelerating Large-Vocabulary Language Models via Frequency-Ranked Speculative Sampling(FR-Spec:通过频率排序的推测采样加速大词汇量语言模型)
[05:58] 🧐 SemViQA: A Semantic Question Answering System for Vietnamese Information Fact-Checking(SemViQA:越南信息事实核查的语义问答系统)
[06:45] 🖼 RectifiedHR: Enable Efficient High-Resolution Image Generation via Energy Rectification(RectifiedHR:通过能量校正实现高效的高分辨率图像生成)
[07:18] 🌐 UFO: A Unified Approach to Fine-grained Visual Perception via Open-ended Language Interface(UFO:通过开放式语言接口实现细粒度视觉感知统一方法)
[07:56] 🧠 ATLaS: Agent Tuning via Learning Critical Steps(通过学习关键步骤进行代理调优)
[08:41] 🤖 Language Models can Self-Improve at State-Value Estimation for Better Search(语言模型能够在状态值估计中自我改进以提升搜索效果)
[09:24] 🔧 IterPref: Focal Preference Learning for Code Generation via Iterative Debugging(迭代调试优化的代码生成偏好学习)
[10:15] 🔬 SPIDER: A Comprehensive Multi-Organ Supervised Pathology Dataset and Baseline Models(SPIDER:综合多器官监督病理数据集与基线模型)
[10:56] 🌐 Improve Representation for Imbalanced Regression through Geometric Constraints(通过几何约束改进不平衡回归的表示)
[11:35] 🎯 Q-Eval-100K: Evaluating Visual Quality and Alignment Level for Text-to-Vision Content(Q-Eval-100K:评估文本到视觉内容的质量与对齐水平)
[12:16] 🤖 AppAgentX: Evolving GUI Agents as Proficient Smartphone Users(AppAgentX:演进出熟练使用智能手机的图形用户界面代理)

【关注我们】
您还可以在以下平台找到我们,获得播客内容以外更多信息
小红书: AI速递