【第161期】VideoWorld:从无标签视频数据中学习复杂知识


Episode Artwork
1.0x
0% played 00:00 00:00
Mar 10 2025 16 mins  

Seventy3: 用NotebookLM将论文生成播客,让大家跟着AI一起进步。

今天的主题是:

VideoWorld: Exploring Knowledge Learning from Unlabeled Videos

Summary

The paper introduces VideoWorld, a novel approach to learning complex knowledge directly from unlabeled video data. It presents a video generation model that, unlike traditional language models, learns rules, reasoning, and planning skills solely from visual input, exemplified through tasks like video-based Go and robotic control. A key finding is that visual change representation is vital for knowledge acquisition, leading to the development of a Latent Dynamics Model (LDM) for enhanced efficiency. Remarkably, VideoWorld achieves high proficiency in Video-GoBench and demonstrates effective robotic control, rivaling oracle models. This research pioneers a new direction for AI learning, emphasizing the potential of visual data as a primary source of knowledge. The supplementary material gives additional details about the implementation and results.

该论文介绍了 VideoWorld,一种全新的方法,能够直接从无标签视频数据中学习复杂知识。论文提出了一种视频生成模型,不同于传统的语言模型,该模型仅依赖视觉输入学习规则、推理和规划能力,并通过视频版围棋(Video-based Go)和机器人控制等任务加以验证。研究的一个关键发现是,视觉变化的表示对于知识获取至关重要,据此提出了 潜在动力学模型(Latent Dynamics Model, LDM) 以提高学习效率。令人瞩目的是,VideoWorldVideo-GoBench 基准测试中表现出色,并在机器人控制任务上展现了可比肩先验模型(oracle models)的能力。这项研究开辟了 人工智能学习的新方向,强调了视觉数据作为知识主要来源的潜力。补充材料提供了关于实现细节和实验结果的更多信息。

原文链接:https://arxiv.org/abs/2501.09781