Quantum imaginary time evolution with Zoe Holmes


Episode Artwork
1.0x
0% played 00:00 00:00
Mar 06 2025 35 mins   7

Professor Zoe Holmes from EPFL in Lausanne, Switzerland, discusses her work on quantum imaginary time evolution and variational techniques for near-term quantum computers. With a background from Imperial College London and Oxford, Holmes explores the limits of what can be achieved with NISQ (Noisy Intermediate-Scale Quantum) devices.

Key topics covered:

  • Quantum Imaginary Time Evolution (QITE) as a cooling-inspired algorithm for finding ground states
  • Comparison of QITE to Variational Quantum Eigensolver (VQE) approaches
  • Challenges in variational methods, including barren plateaus and expressivity concerns
  • Trade-offs between circuit depth, fidelity, and practical implementation on current hardware
  • Potential for scientific value from NISQ-era devices in physics and chemistry applications
  • The interplay between classical and quantum methods in advancing our understanding of quantum systems